
Efficient Algorithm for Privately Releasing Smooth
Queries

Ziteng Wang
Key Laboratory of Machine Perception, MOE

School of EECS
Peking University

wangzt@cis.pku.edu.cn

Kai Fan
Key Laboratory of Machine Perception, MOE

School of EECS
Peking University

interfk@hotmail.com

Jiaqi Zhang
Key Laboratory of Machine Perception, MOE

School of EECS
Peking University

grzhang.jq@gmail.com

Liwei Wang
Key Laboratory of Machine Perception, MOE

School of EECS
Peking University

wanglw@cis.pku.edu.cn

Abstract

We study differentially private mechanisms for answering smooth queries on
databases consisting of data points in Rd. A K-smooth query is specified by a
function whose partial derivatives up to orderK are all bounded. We develop an ε-
differentially private mechanism which for the class of K-smooth queries has ac-

curacy O(
(
1
n

) K
2d+K /ε). The mechanism first outputs a summary of the database.

To obtain an answer of a query, the user runs a public evaluation algorithm which
contains no information of the database. Outputting the summary runs in time
O(n1+

d
2d+K), and the evaluation algorithm for answering a query runs in time

Õ(n
d+2+2d

K
2d+K). Our mechanism is based on L∞-approximation of (transformed)

smooth functions by low degree even trigonometric polynomials with small and
efficiently computable coefficients.

1 Introduction

Privacy is an important problem in data analysis. Often people want to learn useful information from
data that are sensitive. But when releasing statistics of sensitive data, one must tradeoff between the
accuracy and the amount of privacy loss of the individuals in the database.

In this paper we consider differential privacy [10], which has become a standard concept of privacy.
Roughly speaking, a mechanism which releases information about the database is said to preserve
differential privacy, if the change of a single database element does not affect the probability distri-
bution of the output significantly. Differential privacy provides strong guarantees against attacks. It
ensures that the risk of any individual to submit her information to the database is very small. An
adversary can discover almost nothing new from the database that contains the individual’s infor-
mation compared with that from the database without the individual’s information. Recently there
have been extensive studies of machine learning, statistical estimation, and data mining under the
differential privacy framework [33, 5, 19, 18, 6, 34, 22, 4].

Accurately answering statistical queries is a well studied problem in differential privacy. A simple
and efficient method is the Laplace mechanism [10], which adds Laplace noise to the true answers.
Laplace mechanism is especially useful for query functions with low sensitivity, which is the max-

1

guo
高亮

imal difference of the query values of two databases that are different in only one item. A typical
class of queries that has low sensitivity is linear queries, whose sensitivity is O(1/n), where n is the
size of the database.

The Laplace mechanism has a limitation. It can answer at most O(n2) queries. If the number
of queries is substantially larger than n2, Laplace mechanism is not able to provide differentially
private answers with nontrivial accuracy. Considering that potentially there are many users and
each user may submit a set of queries, limiting the number of total queries to be smaller than n2 is
too restricted in some situations. A remarkable result due to Blum, Ligett and Roth [2] shows that
information theoretically it is possible for a mechanism to answer far more than n2 linear queries
while preserving differential privacy and nontrivial accuracy simultaneously.

There are a series of works [11, 12, 23, 17] improving the result of [2]. All these mechanisms
are very powerful in the sense that they can answer general and adversely chosen queries. On the
other hand, even the fastest algorithms [17, 15] run in time linear in the size of the data universe to
answer a query. Often the size of the data universe is much larger than that of the database, so these
mechanisms are inefficient. Recently, [28] shows that there is no polynomial time algorithm that
can answer n2+o(1) general queries while preserving privacy and accuracy (assuming the existence
of one-way function).

Given the hardness result, recently there are growing interests in studying efficient and differentially
private mechanisms for restricted class of queries. From a practical point of view, if there exists a
class of queries which is rich enough to contain most queries used in applications and allows one to
develop fast mechanisms, then the hardness result is not a serious barrier for differential privacy.

One class of queries that attracts a lot of attentions is the k-way conjunctions. The data universe for
this problem is {0, 1}d. Thus each individual record has d binary attributes. A k-way conjunction
query is specified by k features. The query asks what fraction of the individual records in the
database has all these k features being 1. A series of works attack this problem using several different
techniques [1, 14, 7, 16, 27] . They propose elegant mechanisms which run in time poly(n) when
k is a constant. Another class of queries that yields efficient mechanisms is sparse query. A query
is m-sparse if it takes non-zero values on at most m elements in the data universe. [3] develops
mechanisms which are efficient when m = poly(n).

When the data universe is [−1, 1]d, where d is a constant, [2] considers rectangle queries. A rectangle
query is specified by an axis-aligned rectangle. The answer to the query is the fraction of the data
points that lie in the rectangle. [2] shows that if [−1, 1]d is discretized to poly(n) bits of precision,
then there are efficient mechanisms for the class of rectangle queries. There are also works studying
related range queries [20].

In this paper we study smooth queries defined also on data universe [−1, 1]d for constant d. A smooth
query is specified by a smooth function, which has bounded partial derivatives up to a certain order.
The answer to the query is the average of the function values on data points in the database. Smooth
functions are widely used in machine learning and data analysis [32]. There are extensive studies
on the relation between smoothness, regularization, reproducing kernels and generalization ability
[31, 24].

Our main result is an ε-differentially private mechanism for the class of K-smooth queries, which
are specified by functions with bounded partial derivatives up to order K. The mechanism has

(α, β)-accuracy, where α = O
((

1
n

) K
2d+K /ε

)
for β ≥ e−O(n

d
2d+K). The mechanism first outputs a

summary of the database. To obtain an answer of a smooth query, the user runs a public evaluation
procedure which contains no information of the database. Outputting the summary has running time

O
(
n1+

d
2d+K

)
, and the evaluation procedure for answering a query runs in time Õ(n

d+2+2d
K

2d+K). The
mechanism has the advantage that both the accuracy and the running time for answering a query
improve quickly as K/d increases (see also Table 1 in Section 3).

Our algorithm is a L∞-approximation based mechanism and is motivated by [27], which considers
approximation of k-way conjunctions by low degree polynomials. The basic idea is to approximate
the whole query class by linear combination of a small set of basis functions. The technical difficul-
ties lie in that in order that the approximation induces an efficient and differentially private mech-
anism, all the linear coefficients of the basis functions must be small and efficiently computable.

2

guo
高亮

To guarantee these properties, we first transform the query function. Then by using even trigono-
metric polynomials as basis functions we prove a constant upper bound for the linear coefficients.
The smoothness of the functions also allows us to use an efficient numerical method to compute the
coefficients to a precision so that the accuracy of the mechanism is not affected significantly.

2 Background

Let D be a database containing n data points in the data universe X . In this paper, we consider the
case that X ⊂ Rd where d is a constant. Typically, we assume that the data universe X = [−1, 1]d.
Two databases D and D′ are called neighbors if |D| = |D′| = n and they differ in exactly one data
point. The following is the formal definition of differential privacy.
Definition 2.1 ((ε, δ)-differential privacy). A sanitizer S which is an algorithm that maps input
database into some rangeR is said to preserve (ε, δ)-differential privacy, if for all pairs of neighbor
databases D,D′ and for any subset A ⊂ R, it holds that

P(S(D) ∈ A) ≤ P(S(D′) ∈ A) · eε + δ.

If S preserves (ε, 0)-differential privacy, we say S is ε-differentially private.

We consider linear queries. Each linear query qf is specified by a function f which maps data
universe [−1, 1]d to R, and qf is defined by qf (D) := 1

|D|
∑
x∈D f(x).

Let Q be a set of queries. The accuracy of a mechanism with respect to Q is defined as follows.
Definition 2.2 ((α, β)-accuracy). Let Q be a set of queries. A sanitizer S is said to have (α, β)-
accuracy for size n databases with respect to Q, if for every database D with |D| = n the following
holds

P(∃q ∈ Q, |S(D, q)− q(D)| ≥ α) ≤ β,
where S(D, q) is the answer to q given by S.

We will make use of Laplace mechanism [10] in our algorithm. Laplace mechanism adds Laplace
noise to the output. We denote by Lap(σ) the random variable distributed according to the Laplace
distribution with parameter σ: P(Lap(σ) = x) = 1

2σ exp(−|x|/σ).

We will design a differentially private mechanism which is accurate with respect to a query set
Q possibly consisting of infinite number of queries. Given a database D, the sanitizer outputs a
summary which preserves differential privacy. For any qf ∈ Q, the user makes use of an evaluation
procedure to measure f on the summary and obtain an approximate answer of qf (D). Although we
may think of the evaluation procedure as part of the mechanism, it does not contain any information
of the database and therefore is public. We will study the running time for the sanitizer outputting
the summary. Ideally it is O(nc) for some constant c not much larger than 1. For the evaluation
procedure, the running time per query is the focus. Ideally it is sublinear in n. Here and in the rest
of the paper, we assume that calculating the value of f on a data point x can be done in unit time.

In this work we will frequently use trigonometric polynomials. For the univariate case, a function
p(θ) is called a trigonometric polynomial of degree m if p(θ) = a0 +

∑m
l=1 (al cos lθ + bl sin lθ),

where al, bl are constants. If p(θ) is an even function, we say that it is an even trigonomet-
ric polynomial, and p(θ) = a0 +

∑m
l=1 al cos lθ. For the multivariate case, if p(θ1, . . . , θd) =∑

l=(l1,...,ld)
al cos(l1θ1) . . . cos(ldθd), then p is said to be an even trigonometric polynomial (with

respect to each variable), and the degree of θi is the upper limit of li.

3 Efficient differentially private mechanism

Let us first describe the set of queries considered in this work. Since each query qf is specified by a
function f , a set of queries QF can be specified by a set of functions F . Remember that each f ∈ F
maps [−1, 1]d to R. For any point x = (x1, . . . , xd) ∈ [−1, 1]d, if k = (k1, . . . , kd) is a d-tuple
with nonnegative integers, then we define

Dk := Dk1
1 · · ·D

kd
d :=

∂k1

∂xk11
· · · ∂

kd

∂xkdd
.

3

Parameters: Privacy parameters ε, δ > 0; Failure probability β > 0;
Smoothness order K ∈ N; Set t = n

1
2d+K .

Input: Database D ∈
(
[−1, 1]d

)n
.

Output: A td-dimensional vector as the summary.
Algorithm:

For each x = (x1, . . . , xd) ∈ D:
Set: θi(x) = arccos(xi), i = 1, . . . , d;

For every d-tuple of nonnegative integers m = (m1, . . . ,md), where ‖m‖∞ ≤ t− 1
Compute: Sum(D) = 1

n

∑
x∈D cos (m1θ1(x)) . . . cos (mdθd(x));

Ŝum(D)← Sum(D) + Lap
(
td

nε

)
;

Let Ŝu(D) =
(

Ŝum(D)
)
‖m‖∞≤t−1

be a td dimensional vector;

Return: Ŝu(D).

Algorithm 1: Outputting the summary

Parameters: t = n
1

2d+K .
Input: A query qf , where f : [−1, 1]d → R and f ∈ CKB ,

Summary Ŝu(D) (a td-dimensional vector).
Output: Approximate answer to qf (D).
Algorithm:

Let gf (θ) = f (cos(θ1), . . . , cos(θd)), θ = (θ1, . . . , θd) ∈ [−π, π]d;
Compute a trigonometric polynomial approximation pt(θ) of gf (θ),

where the degree of each θi is t; // see Section 4 for details of computation.
Denote pt(θ) =

∑
m=(m1,...,md),‖m‖∞<t cm cos(m1θ1) . . . cos(mdθd);

Let c = (cm)‖m‖∞<t be a td-dimensional vector;

Return: the inner product < c, Ŝu(D) >.

Algorithm 2: Answering a query

Let |k| := k1 + . . .+ kd. Define the K-norm as

‖f‖K := sup
|k|≤K

sup
x∈[−1,1]d

|Dkf(x)|.

We will study the set CKB which contains all smooth functions whose derivatives up to order K have
∞-norm upper bounded by a constant B > 0. Formally, CKB := {f : ‖f‖K ≤ B}. The set
of queries specified by CKB , denoted as QCKB , is our focus. Smooth functions have been studied in
depth in machine learning [29, 32, 31] and found wide applications [24].

The following theorem is our main result. It says that if the query class is specified by smooth
functions, then there is a very efficient mechanism which preserves ε-differential privacy and good
accuracy. The mechanism consists of two parts: One for outputting a summary of the database,
the other for answering a query. The two parts are described in Algorithm 1 and Algorithm 2
respectively. The second part of the mechanism contains no private information of the database.

Theorem 3.1. Let the query set be QCKB = {qf = 1
n

∑
x∈D f(x) : f ∈ CKB }, where K ∈ N

and B > 0 are constants. Let the data universe be [−1, 1]d, where d ∈ N is a constant. Then the
mechanism S given in Algorithm 1 and Algorithm 2 satisfies that for any ε > 0, the following hold:

1) The mechanism is ε-differentially private.

2) For any β ≥ 10 · e− 1
5 (n

d
2d+K) the mechanism is (α, β)-accurate, where α = O

((
1
n

) K
2d+K /ε

)
,

and the hidden constant depends only on d, K and B.

4

Table 1: Performances vs. Order of smoothness
Order of smoothness Accuracy α Time: Outputting summary Time: Answering a query

K = 1 O((1
n)

1
2d+1) O(n

3
2) Õ(n

3
2+

1
4d+2)

K = 2d O(1√
n

) O(n
5
4) Õ(n

1
4+

3/4
d)

d
K = ε0 � 1 O((1

n)1−2ε0) O(n1+ε0) Õ(nε0(1+
3
d))

3) The running time for S to output the summary is O(n
3d+K
2d+K).

4) The running time for S to answer a query is O(n
d+2+2d

K
2d+K polylog(n)).

The proof of Theorem 3.1 is given in the appendix.

To have a better idea of how the performances depend on the order of smoothness, let us consider
three cases. The first case is K = 1, i.e., the query functions only have the first order derivatives.
Another extreme case is K � d, and we assume d/K = ε0 � 1. We also consider a case in the
middle by assuming K = 2d. Table 1 gives simplified upper bounds for the error and running time
in these cases. We have the following observations:

1) The accuracy α improves dramatically from roughly O(n−
1
2d) to nearly O(n−1) as K increases.

For K > 2d, the error is smaller than the sampling error O(1√
n

).

2) The running time for outputting the summary does not change too much, because reading through
the database requires Ω(n) time.

3) The running time for answering a query reduces significantly from roughly O(n3/2) to nearly
O(nε0) as K getting large. When K = 2d, it is about n1/4 if d is not too small. In practice, the
speed for answering a query may be more important than that for outputting the summary since
the sanitizer only output the summary once. Thus having an nc-time (c � 1) algorithm for query
answering will be appealing.

Conceptually our mechanism is simple. First, by change of variables we have gf (θ1, . . . , θd) =
f(cos θ1, . . . , cos θd). It also transforms the data universe from [−1, 1]d to [−π, π]d. Note that for
each variable θi, gf is an even function. To compute the summary, the mechanism just gives noisy
answers to queries specified by even trigonometric monomials cos(m1θ1) . . . cos(mdθd). For each
trigonometric monomial, the highest degree of any variable is t := maxdmd = O(n

1
2d+K). The

summary is a O(n
d

2d+K)-dimensional vector. To answer a query specified by a smooth function f ,
the mechanism computes a trigonometric polynomial approximation of gf . The answer to the query
qf is a linear combination of the summary by the coefficients of the approximation trigonometric
polynomial.

Our algorithm is an L∞-approximation based mechanism, which is motivated by [27]. An approxi-
mation based mechanism relies on three conditions:

• There exists a small set of basis functions such that every query function can be well approximated
by a linear combination of them.

• All the linear coefficients are small.

• The whole set of the linear coefficients can be computed efficiently.

If these conditions hold, then the mechanism just outputs noisy answers to the set of queries specified
by the basis functions as the summary. When answering a query, the mechanism computes the
coefficients with which the linear combination of the basis functions approximate the query function.
The answer to the query is simply the inner product of the coefficients and the summary vector.

5

The following theorem guarantees that by change of variables and using even trigonometric poly-
nomials as the basis functions, the class of smooth functions has all the three properties described
above.
Theorem 3.2. Let γ > 0. For every f ∈ CKB defined on [−1, 1]d, let

gf (θ1, . . . , θd) = f(cos θ1, . . . , cos θd), θi ∈ [−π, π].

Then, there is an even trigonometric polynomial p whose degree of each variable is t(γ) =
(

1
γ

)1/K
:

p(θ1, . . . , θd) =
∑

0≤l1,...,ld<t(γ)

cl1,...,ld cos(l1θ1) . . . cos(ldθd),

such that

1) ‖gf − p‖∞ ≤ γ.

2) All the linear coefficients cl1,...,ld can be uniformly upper bounded by a constant M independent
of t(γ) (i.e., M depends only on K, d, and B).

3) The whole set of the linear coefficients can be computed in time O
(

(1
γ)

d+2
K + 2d

K2 · polylog(1
γ)
)

.

Theorem 3.2 is proved in Section 4. Based on Theorem 3.2, the proof of Theorem 3.1 is mainly
the argument for Laplace mechanism together with an optimization of the approximation error γ
trading-off with the Laplace noise. (Please see the appendix.)

4 L∞-approximation of smooth functions: small and efficiently computable
coefficients

In this section we prove Theorem 3.2. That is, for every f ∈ CKB the corresponding gf can be
approximated by a low degree trigonometric polynomial in L∞-norm. We also require that the
linear coefficients of the trigonometric polynomial are all small and can be computed efficiently.
These properties are crucial for the differentially private mechanism to be accurate and efficient.

In fact, L∞-approximation of smooth functions in CKB by polynomial (and other basis functions) is
an important topic in approximation theory. It is well-known that for every f ∈ CKB there is a low
degree polynomial with small approximation error. However, it is not clear whether there is an upper
bound for the linear coefficients that is sufficiently good for our purpose. Instead we transform f to
gf and use trigonometric polynomials as the basis functions in the mechanism. Then we are able
to give a constant upper bound for the linear coefficients. We also need to compute the coefficients
efficiently. But results from approximation theory give the coefficients as complicated integrals.
We adopt an algorithm which fully exploits the smoothness of the function and thus can efficiently
compute approximations of the coefficients to certain precision so that the errors involved do not
affect the accuracy of the differentially private mechanism too much.

Below, Section 4.1 describes the classical theory on trigonometric polynomial approximation of
smooth functions. Section 4.2 shows that the coefficients have a small upper bound and can be
efficiently computed. Theorem 3.2 then follows from these results.

4.1 Trigonometric polynomial approximation with generalized Jackson kernel

This section mainly contains known results of trigonometric polynomial approximation, stated in a
way tailored to our problem. For a comprehensive description of univariate approximation theory,
please refer to the excellent book of [9]; and to [26] for multivariate approximation theory.

Let gf be the function obtained from f ∈ CKB ([−1, 1]d): gf (θ1, . . . , θd) = f(cos θ1, . . . , cos θd).
Note that gf ∈ CKB′([−π, π]d) for some constant B′ depending only on B,K, d, and gf is even
with respect to each variable. The key tool in trigonometric polynomial approximation of smooth
functions is the generalized Jackson kernel.

Definition 4.1. Define the generalized Jackson kernel as Jt,r(s) = 1
λt,r

(
sin(ts/2)
sin(s/2)

)2r
, where λt,r is

determined by
∫ π
−π Jt,r(s)ds = 1.

6

Jt,r(s) is an even trigonometric polynomial of degree r(t − 1). Let Ht,r(s) = Jt′,r(s), where
t′ = bt/rc+ 1. Then Ht,r is an even trigonometric polynomial of degree at most t. We write

Ht,r(s) = a0 +

t∑
l=1

al cos ls. (1)

Suppose that g is a univariate function defined on [−π, π] which satisfies that g(−π) = g(π). Define
the approximation operator It,K as

It,K(g)(x) = −
∫ π

−π
Ht,r(s)

K+1∑
l=1

(−1)l
(
K + 1

l

)
g(x+ ls)ds, (2)

where r = dK+3
2 e. It is not difficult to see that It,K maps g to a trigonometric polynomial of degree

at most t.

Next suppose that g is a d-variate function defined on [−π, π]d, and is even with respect to each
variable. Define an operator Idt,K as sequential composition of It,K,1, . . . , It,K,d, where It,K,j is
the approximation operator given in (2) with respect to the jth variable of g. Thus Idt,K(g) is a
trigonometric polynomial of d-variables and each variable has degree at most t.
Theorem 4.1. Suppose that g is a d-variate function defined on [−π, π]d, and is even with respect
to each variable. Let D(K)

j g be the Kth order partial derivative of g respect to the j-th variable. If

‖D(K)
j g‖∞ ≤M for some constant M for all 1 ≤ j ≤ d, then there is a constant C such that

‖g − Idt,K(g)‖∞ ≤
C

tK+1
,

where C depends only on M , d and K.

4.2 The linear coefficients

In this subsection we study the linear coefficients in the trigonometric polynomial Idt,K(gf). The
previous subsection established that gf can be approximated by Idt,K(gf) for a small t. Here we con-
sider the upper bound and approximate computation of the coefficients. Since Idt,K(gf)(θ1, . . . , θd)
is even with respect to each variable, we write

Idt,K(gf)(θ1, . . . , θd) =
∑

0≤n1,...,nd≤t

cn1,...,nd cos(n1θ1) . . . cos(ndθd). (3)

Fact 4.2. The coefficients cn1,...,nd of Idt,K(gf) can be written as

cn1,...,nd = (−1)d
∑

1≤k1,...,kd≤K+1
0≤l1,...,ld≤t
li=ki·ni∀i∈[d]

ml1,k1,...,ld,kd , (4)

where

ml1,k1,...,ld,kd =

d∏
i=1

(−1)kiali

(
K + 1

ki

)(∫
[−π,π]d

d∏
i=1

cos

(
li
ki
θi

)
gf (θ)dθ

)
, (5)

and ali is the linear coefficient of cos(lis) in Ht,r(s) as given in (1).

The following lemma shows that the coefficients cn1,...,nd of Idt,K(gf) can be uniformly upper
bounded by a constant independent of t.
Lemma 4.3. There exists a constant M which depends only on K,B, d but independent of t, such
that for every f ∈ CKB , all the linear coefficients cn1,...,nd of Idt,K(gf) satisfy

|cn1,...,nd | ≤M.

7

The proof of Lemma 4.3 is given in the appendix.

Now we consider the computation of the coefficients cn1,...,nd of Idt,K(gf). Note that each coeffi-
cient involves d-dimensional integrations of smooth functions, so we have to numerically compute
approximations of them. For function class CKB defined on [−1, 1]d, traditional numerical integra-
tion methods run in time O((1

τ)d/K) in order that the error is less than τ . Here we adopt the sparse
grids algorithm due to Gerstner and Griebel [13] which fully exploits the smoothness of the inte-
grand. By choosing a particular quadrature rule as the algorithm’s subroutine, we are able to prove
that the running time of the sparse grids is bounded by O((1

τ)2/K). The sparse grids algorithm, the
theorem giving the bound for the running time and its proof are all given in the appendix. Based
on these results, we establish the running time for computing the approximate coefficients of the
trigonometric polynomial, which is stated in the following Lemma.
Lemma 4.4. Let ĉn1,...,nd be an approximation of the coefficient cn1,...,nd of Idt,K(gf) obtained by
approximately computing the integral in (5) with a version of the sparse grids algorithm [13] (given
in the appendix). Let

Îdt,K(gf)(θ1, . . . , θd) =
∑

0≤n1,...,nd≤t

ĉn1,...,nd cos(n1θ1) . . . cos(ndθd).

Then for every f ∈ CKB , in order that ‖Îdt,K(gf) − Idt,K(gf)‖∞ ≤ O
(
t−K

)
, it suffices that the

computation of all the coefficients ĉn1,...,nd runs in time O
(
t(1+

2
K)d+2 · polylog(t)

)
. In addition,

maxn1,...,nd |ĉn1,...,nd − cn1,...,nd | = o(1) as t→∞.

The proof of Lemma 4.4 is given in the appendix. Theorem 3.2 then follows easily from Lemma 4.3
and Lemma 4.4.

Proof of Theorem 3.2. Setting t = t(γ) =
(

1
γ

)1/K
. Let p = Îdm,K(gf). Combining Lemma 4.3

and Lemma 4.4, and note that the coefficients ĉn1,...,nd are upper bounded by a constant, the theorem
follows.

5 Conclusion

In this paper we propose an ε-differentially private mechanism for efficiently releasing K-smooth

queries. The accuracy of the mechanism is O(
(
1
n

) K
2d+K). The running time for outputting the sum-

mary is O(n1+
d

2d+K), and is Õ(n
d+2+2d/K

2d+K) for answering a query. The result can be generalized
to (ε, δ)-differential privacy straightforwardly using the composition theorem [12]. The accuracy
improves slightly to O((1

n)
2K

3d+2K log(1
δ)

K
3d+2K), while the running time for outputting the summary

and answering the query increase slightly. Our mechanism is based on approximation of smooth
functions by linear combination of a small set of basis functions with small and efficiently com-
putable coefficients. Directly approximating functions in CKB ([−1, 1]d) by polynomials does not
guarantee small coefficients and is less efficient. To achieve these goals we use trigonometric poly-
nomials to approximate a transformation of the query functions.

It is worth pointing out that the approximation considered here for differential privacy is L∞-
approximation, because the accuracy is defined in the worst case sense with respect to databases and
queries. L∞-approximation is different to L2-approximation, which is simply the Fourier transform
if we use trigonometric polynomials as the basis functions. L2-approximation does not guarantee
(worst case) accuracy.

For the class of smooth functions defined on [−1, 1]d where d is a constant, in fact it is not difficult
to design a poly(n) time differentially private mechanism. One can discretize [−1, 1]d to O(1√

n
)

precision, and use the differentially private mechanism for answering general queries (e.g., PMW
[17]). However the mechanism runs in time Õ(nd/2) to answer a query, and provides Õ(n−1/2)
accuracy. In contrast our mechanism exploits higher order smoothness of the queries. It is always
more efficient, and for queries highly smooth it is more accurate.

8

Finally, the smooth query should not be confused with the smooth sensitivity [21], which is an
upper bound of the local sensitivity. Different to the global sensitivity, local sensitivity measures the
sensitivity of a query on a data element and can be smaller than global sensitivity. For our problem,
both global and local sensitivities are O(1

n).

Acknowledgments

This work was supported by NSFC(61222307, 61075003) and a grant from MOE-Microsoft Key
Laboratory of Statistics and Information Technology of Peking University. We also thank Di He for
very helpful discussions.

Appendix

Here we give proofs of the theorems and lemmas, as well as a description of the sparse grids algo-
rithm.

Proof of Theorem 3.1

Proof. We prove the four results separately.

1) The summary is a td-dimensional vector with sensitivity td

n . By the standard argument for Laplace
mechanism, adding td i.i.d. Laplace noise Lap(t

d

nε) preserves ε-differential privacy.

2) The error of the answer to each query consists of two parts: the approximation error and the noise
error. Setting the approximation error γ in Theorem 3.2 as γ = n−

K
2d+K . Then the degree of each

variable in g(θ) is t(γ) =
(

1
γ

)1/K
= n

1
2d+K , which is the same as t given in Algorithm 1. Now

consider the error induced by the Laplace noise. The noise error is simply the inner product of the
td linear coefficients cl1,...,ld and td i.i.d. Lap(t

d

nε). Since the coefficients are uniformly bounded by
a constant, the noise error is bounded by the sum of td independent and exponentially distributed
random variables (i.e., |Lap(t

d

nε)|). The following lemma gives it an upper bound.

Lemma 5.1. Let X1, . . . , XN be i.i.d. random variables with p.d.f. P(Xi = x) = 1
σ e
−x/σ for

x ≥ 0. Then

P(

N∑
i=1

Xi ≥ 2Nσ) ≤ 10 · e−N5 .

Proof. Let Y =
∑N
i=1Xi. It is well-known that Y satisfies the gamma distribution, and for ∀u > 0

P(Y ≥ u) ≤ e−uσ
N−1∑
n=0

1

n!

(u
σ

)n
.

Thus

P(Y ≥ 2Nσ) ≤ e−2N
N−1∑
n=0

1

n!
(2N)n.

Note that for n < N

1
n! (2N)n

e2N
≤

1
N ! (2N)N

1
(2N)! (2N)2N

≤
N−1∏
n=1

(1− n

2N
) ≤ e−

N−1
4 .

Thus
P(Y ≥ 2Nσ) ≤ e−2N

(
e2NNe−

N−1
4

)
≤ 10 · e−N5 .

9

Part 2) of Theorem 3.1 then follows from Lemma 5.1.

3) This is straightforward since the summary is a td-dimensional vector and for each item the running
time is O(n).

4) According to our setting of t, it is easy to check that the error induced by Laplace noise and that
of approximation have the same order. Then by the third part of Theorem 3.2 we have the running

time for computing the coefficients of the trigonometric polynomial is O
(
n
d+2+2d

K
2d+K · polylog(n)

)
.

The result follows since computing the inner product has running time O(n
d

2d+K), which is much
less than computing the coefficients.

Proof of Lemma 4.3 We first give a simple lemma.

Lemma 5.2. Let

Ht,r(s) =

t∑
l=0

al cos ls. (6)

Then for all l = 0, 1, . . . , t
|al| ≤ 1/π.

Proof. For any l ∈ {0, 1, . . . , t}, multiplying cos ls on both sides of (6) and integrating from −π to
π, we obtain that for some ξ ∈ [−π, π],

al =
1

π

∫ π

−π
Ht,r(s) cos lsds =

cos lξ

π

∫ π

−π
Ht,r(s)ds =

cos lξ

π
.

where in the last equation we use the identity∫ π

−π
Ht,r(s)ds = 1.

This completes the proof.

Proof of Lemma 4.3. We first bound ml1,k1,...,ld,kd . Recall that (see also (5) in Fact 4.2)

ml1,k1,...,ld,kd =

d∏
i=1

(−1)kiali

(
K + 1

ki

)(∫
[−π,π]d

d∏
i=1

cos

(
li
ki
θi

)
gf (θ)dθ

)
.

It is not difficult to see that |ml1,k1,...,ld,kd | can be upper bounded by a constant depending only on
d,K and B, but independent of t. This is because that the previous lemma shows |ali | ≤ 1

π and gf
is upper bounded by a constant.

Now consider cn1,...,nd . Recall that

cn1,...,nd = (−1)d
∑

1≤k1,...,kd≤K+1
0≤l1,...,ld≤t
li=ki·ni∀i∈[d]

ml1,k1,...,ld,kd .

We need to show that all |cn1,...,nd | are upper bounded by a constant independent of t. Note that
although each li takes t+1 values, li and ki must satisfy the constraint li/ki = ni. Since ki can take
at most K + 1 values, the number of ml1,k1,...,ld,kd appeared in the summation is at most (K + 1)d.
Therefore all cn1,...,nd are bounded by a constant depending only on d,K andB, and is independent
of t.

10

The sparse grids algorithm In this section we briefly describe the sparse grids numerical integra-
tion algorithm due to Gerstner and Griebel. (Please refer to [13] for a complete introduction.) We
also specify a subroutine used by this algorithm, which is important for proving the running time.

Numerical integration algorithms dicretize the space and use weighted sum to approximate the in-
tegration. Traditional methods for the multidimensional case usually discretize each dimension to
the same precision level. In contrast, the sparse grids methods, first proposed by Smolyaks [25],
discretize each dimension to carefully chosen and possibly different precision levels, and finally
combine many such discretization results. When the integrand has bounded mixed derivatives, as in
our case that the integrand is in CKB , one can use very few grids in most dimension and still achieve
high accuracy.

The sparse grids method is based on one dimensional quadrature (i.e., numerical integration). There
are many candidates for one dimensional quadrature. In order to prove an upper bound for the
running time, we choose the Clenshaw-Curtis rule [8] as the subroutine. This also makes the analysis
simpler.

Let h : [−1, 1]d → R be the integrand. Let SG(h) be the output of the sparse grids algorithm. Let l
be the level parameter of the algorithm.

Let k = (k1, . . . , kd) and j = (j1, . . . , jd) be d-tuples of positive integers. Then SG(h) is given as
a combination of weighted sum:

SG(h) :=
∑

|k|≤l+d−1

m(k1)∑
j1=1

· · ·
m(kd)∑
jd=1

uk,jf(xk,j). (7)

Below we describe m(ki), xk,j and uk,j respectively.

1) For any k ∈ N, m(k) := 2k.

2) For each k = (k1, . . . , kd) and j = (j1, . . . , jd), define xk,j := (xk1,j1 , . . . , xkd,jd), and xki,ji
is the jith zero of the Chebyshev polynomial with degree m(ki). Denote by Tm(ki) the Chebyshev
polynomial. Its zeros are given by the following formula.

xki,ji = cos

(
(2ji − 1)π

2m(ki)

)
, ji = 1, 2, . . . ,m(ki). (8)

3) Now we define the weights uk,j. First let wk,j be the weight of xk,j in the one-dimensional
Clenshaw-Curtis quadrature rule given by

wk,1 =
1

(m(k) + 1)(m(k)− 1)
,

wk,j =
2

m(k)

1 + 2

m(k)/2∑
r=1

′ 1

1− 4r2
cos

(
2π(j − 1)r

m(k)

) , for 2 ≤ j ≤ m(k), (9)

where
∑′ means that the last term of the summation is halved.

Next, for any fixed k and j, define

v(k+q),j =

{
wk,j if q = 1 ,
w(k+q−1),r − w(k+q−2),s if q > 1, and for r, s satisfying xk,j = x(k+q−1),r = x(k+q−2),s ,

where xk,j is the zero of Chebyshev polynomial defined above.

Finally, the weight uk,j is given by

uk,j =
∑

|k+q|≤l+2d−1

v(k1+q1),j1 . . . v(kd+qd),jd ,

where k = (k1, . . . , kd) and q = (q1, · · · , qd). This completes the description of the sparse grids
algorithm.

11

Proof of Lemma 4.4 We first give the result that characterizes the running time of the Gerstner-
Griebel sparse grids algorithm in order to achieve a given accuracy.
Lemma 5.3. Let h ∈ CKB ([−π, π]d) for some constants K and B. Let SG(h) be the numerical
integration of h using the sparse grids algorithm described in the previous section. Given any
desired accuracy parameter τ > 0, the algorithm achieves

∣∣∣∫[π,π]d h(θ)dθ − SG(h)
∣∣∣ ≤ τ , with

running time at most O
((

1
τ

) 2
K (log 1

τ)3d+
2d
K +1

)
.

Proof of Lemma 5.3. Let L = 2l+1−2, where l is the level parameter of the sparse grids algorithm.
l and L will be determined by the desired accuracy τ later. In fact, L is the maximum number of
grid points of one dimension. By (7) it is easy to see that the total number of grid points, denoted by
Nd
l , is given by

Nd
l =

∑
|k|≤l+d−1

m(k1) · · ·m(kd)

= O(ld−1L)

= O(L(log2 L)d−1). (10)

In [13] it is shown that the approximation error τ can be bounded by the maximal number of grid
points per dimension as follows.

τ = O(L−K(logL)(K+1)(d−1)). (11)

Next, let us consider the computational cost per grid point. Since we assume that h(x) can be
computed in unit time, and the zeros of Chebyshev polynomials can be computed according to (8),
then computing the weights uk,j dominates the running time. Fix k ∈ N, consider wk,j , 1 ≤ j ≤
m(k). From (9), it is not difficult to see that the set of wk,j can be computed by Fast Fourier
Transform (FFT). Therefore the computation cost is O(m(k) logm(k)). Some calculations yield
that for a fixed k, j, the computational cost for uk,j is O(dL logL). Combining this with (10) and
(11) the lemma follows.

Next we turn to prove Lemma 4.4. First, we need the following famous result.
Lemma 5.4. Let m be a positive integer, let σ(m) denotes the number of divisors of m, then for
large t

t∑
m=1

σ(m) = t ln t+ (2c− 1)t+O(t1/2),

where c is Euler’s constant.

To analyze the running time, we also need a result about the normalizing constant of the generalized
Jackson kernel [30].
Lemma 5.5 ([30]). Let

Jt,r =
1

λt,r

(
sin(ts/2)

sin(s/2)

)2r

,

be the generalized Jackson kernel as given in Definition 4.1, and the normalizing constant λt,r is
determined by ∫ π

−π
Jt,r(s)ds = 1.

Then the following identity of the normalizing constant λt,r holds

λt,r = 2π

[r−r/t]∑
k=0

(−1)k
(

2r

k

)(
r(t+ 1)− tk − 1

r(t− 1)− tk

)
. (12)

12

Now we are ready to prove Lemma 4.4.

Proof of Lemma 4.4. Assume that the error induced by the sparse grids algorithm is at most τ per
integration. That is, for every k = (k1, . . . , kd), l = (l1, . . . , ld)∣∣∣∣∣

∫
[−π,π]d

d∏
i=1

cos

(
li
ki
θi

)
g(θ)dθ

∣∣∣∣∣ ≤ τ.
Then

sup
n1,...,nd

|cn1,...,nd − ĉn1,...,nd | ≤ sup
n1,...,nd

∣∣∣∣∣∣
∑

li/ki=ni

d∏
i=1

(−1)ki
(
K + 1

ki

)
ali

∣∣∣∣∣∣ · τ.
By Lemma 5.2, |ali | ≤ 1

π . We obtain that

sup
n1,...,nd

|cn1,...,nd − ĉn1,...,nd | ≤M · τ, (13)

for some constant M independent of t.

Similarly, we have ∥∥∥Idt,K(g)− Îdt,K(g)
∥∥∥
∞
≤ O(tdτ). (14)

Since in the statement of the lemma the desired approximation error is O(t−K), we have

τ = t−(K+d). (15)

It is also clear that
max

n1,...,nd
|ĉn1,...,nd − cn1,...,nd | = o(1), as t→∞.

Now let us consider the computation cost. Recall that the kernel Ht,r is an even trigonometric of
degree at most t:

Ht,r(s) = a0 +

t∑
l=1

al cos ls, (16)

where Ht,r(s) = Jt′,r(s) and Jt′,r is the generalized Jackson kernel given in Definition 4.1. First
we need to compute the value of the linear coefficient al of Ht,r. By Lemma 5.5, one can compute
the linear coefficients al by solving a system of t+1 linear equations. That is, we choose an arbitrary
t+ 1 points in [−π, π] and solve (16), since we can compute the value of Ht,r(s) directly based on
the value of λt,r. Clearly, the running time is O(t3).

Having ali , let us consider the computational cost for calculating ĉn1,...,nd . According to
Lemma 5.3, the running time for the sparse grids algorithm to compute one integration is
O
(

(1
τ)

2
K (log(1/τ))

3d+ 2d
K +1

)
= O

(
t
2(K+d)
K polylog(t)

)
.

Since we only need to compute the integration when li|ki for all i ∈ [d], by Lemma 5.4 the number
of integrations to compute is at most

(K + 1 + σ(1) + . . .+ σ(t))
d

= O
(
(t log t)d

)
.

Thus the total time cost for all numerical integration is O
(
t(1+

2
K)d+2polylog(t)

)
. Since

(1 +
2

K
)d+ 2 ≥ 3,

the computation time for obtaining the coefficients al in Ht,r is dominated by the running time of
the sparse grids algorithm. It is also easy to see that all other computation costs are dominated by
that of the numerical integration. The lemma follows.

13

References

[1] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and consis-
tency too: a holistic solution to contingency table release. In PODS, pages 273–282. ACM, 2007.

[2] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In
STOC, pages 609–618. ACM, 2008.

[3] A. Blum and A. Roth. Fast private data release algorithms for sparse queries. arXiv preprint arX-
iv:1111.6842, 2011.

[4] K. Chaudhuri and D. Hsu. Sample complexity bounds for differentially private learning. In COLT, 2011.

[5] K. Chaudhuri, C. Monteleoni, and A.D. Sarwate. Differentially private empirical risk minimization.
JMLR, 12:1069, 2011.

[6] K. Chaudhuri, A. Sarwate, and K. Sinha. Near-optimal differentially private principal components. In
NIPS, pages 998–1006, 2012.

[7] M. Cheraghchi, A. Klivans, P. Kothari, and H.K. Lee. Submodular functions are noise stable. In SODA,
pages 1586–1592. SIAM, 2012.

[8] C.W. Clenshaw and A.R. Curtis. A method for numerical integration on an automatic computer. Nu-
merische Mathematik, 2(1):197–205, 1960.

[9] R.A. DeVore and G. G. Lorentz. Constructive approximation, volume 303. Springer Verlag, 1993.

[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis.
TCC, pages 265–284, 2006.

[11] C. Dwork, M. Naor, O. Reingold, G.N. Rothblum, and S. Vadhan. On the complexity of differentially
private data release: efficient algorithms and hardness results. In STOC, pages 381–390. ACM, 2009.

[12] C. Dwork, G.N. Rothblum, and S. Vadhan. Boosting and differential privacy. In FOCS, pages 51–60.
IEEE, 2010.

[13] T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numerical algorithms, 18(3-
4):209–232, 1998.

[14] A. Gupta, M. Hardt, A. Roth, and J. Ullman. Privately releasing conjunctions and the statistical query
barrier. In STOC, pages 803–812. ACM, 2011.

[15] M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially private data
release. In NIPS, 2012.

[16] M. Hardt, G. N. Rothblum, and R. A. Servedio. Private data release via learning thresholds. In SODA,
pages 168–187. SIAM, 2012.

[17] M. Hardt and G.N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis.
In FOCS, pages 61–70. IEEE Computer Society, 2010.

[18] D. Kifer and B.R. Lin. Towards an axiomatization of statistical privacy and utility. In PODS, pages
147–158. ACM, 2010.

[19] J. Lei. Differentially private M-estimators. In NIPS, 2011.

[20] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under
differential privacy. In PODS, pages 123–134. ACM, 2010.

[21] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In
STOC, pages 75–84. ACM, 2007.

[22] Pravesh K. Prateek J. and Abhradeep T. Differentially private online learning. In COLT, 2012.

[23] A. Roth and T. Roughgarden. Interactive privacy via the median mechanism. In STOC, pages 765–774.
ACM, 2010.

[24] A. Smola, B. Schölkopf, and K. Müller. The connection between regularization operators and support
vector kernels. Neural Networks, 11(4):637–649, 1998.

[25] S.A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions.
In Dokl. Akad. Nauk SSSR, volume 4, page 111, 1963.

[26] V.N. Temlyakov. Approximation of periodic functions. Nova Science Pub Inc, 1994.

[27] J. Thaler, J. Ullman, and S. Vadhan. Faster algorithms for privately releasing marginals. In ICALP, pages
810–821. Springer, 2012.

[28] J. Ullman. Answering n2+o(1) counting queries with differential privacy is hard. In STOC. ACM, 2013.

[29] A. van der Vart and J.A. Wellner. Weak Convergence and Empirical Processes. Springer, 1996.

14

guo
高亮

[30] M. Vyazovskaya and N. Pupashenko. On the normalizing multiplier of the generalized jackson kernel.
Mathematical Notes, 80(1-2):19–26, 2006.

[31] G. Wahba et al. Support vector machines, reproducing kernel Hilbert spaces and the randomized gacv.
Advances in Kernel Methods-Support Vector Learning, 6:69–87, 1999.

[32] L. Wang. Smoothness, disagreement coefficient, and the label complexity of agnostic active learning.
Journal of Machine Learning Research, 12(2269-2292):5–2, 2011.

[33] S. Wasserman, L.and Zhou. A statistical framework for differential privacy. Journal of the American
Statistical Association, 105(489):375–389, 2010.

[34] O. Williams and F. McSherry. Probabilistic inference and differential privacy. In NIPS, 2010.

15

	Introduction
	Background
	Efficient differentially private mechanism
	L-approximation of smooth functions: small and efficiently computable coefficients
	Trigonometric polynomial approximation with generalized Jackson kernel
	The linear coefficients

	Conclusion

